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Abstract

Differential subordination and superordination results are obtained for analytic functions in the
open unit disk which are associated with the Dziok—Srivastava linear operator. These results are
obtained by investigating appropriate classes of admissible functions. Sandwich-type results are also
obtained.
© 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Let H(U) be the class of functions analytic in U = {z € C : |z| <1} and H]a, n] be the
subclass of H(U) consisting of functions of the form f(z) = a + a,z" + a,412"T' + - - -, with
Ho = H[0, 1] and ‘H = H[1, 1]. Let A, denote the class of all analytic functions of the form

f(2) ="+ f: aZt (z e U) (1.1)

k=n+1
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and let A; := A. Let fand F be members of H(U). The function f'is said to be subordinate
to F, or Fis said to be superordinate to f, if there exists a function w(z) analytic in U with
w(0)=0 and |w(z)|<1 (z € U), such that f(z) = F(w(z)). In such a case we write f(z) < F(z).
If Fis univalent, then /' < F if and only if f{0) = F(0) and f(U) C F(U). For two functions f
given by Eq. (I.1)and g(z) = 2"+ > -, 4 byz*, the Hadamard product (or convolution) of
fand g is defined by

(F*9)@) ="+ Y abz = (g+)2). (1.2)
k=n+1
Foro; € C(j=1,2,....)) and B; € C\{0,—1,-2,...} j=1,2,....m), the generalized hypergeo-
metric function ,F, («1,...,05B1,..., B, z) 1s defined by the infinite series
Fo (1,0 By B Ejmh () 2 (I<m+1; LmeNg={0,1,2,..)),

LBk B K

where (a), 1s the Pochhammer symbol defined by

w)_ﬂwwt_l (k =0,
KT @ ala+D)a+2).. . (a+k=1) (keN={1,2,3..)).
Corresponding to the function A, (ay, ..., 005 By, ..., B 2) = 2" F, (o1, ..., 00 Brs ooy Bops 2)s

the Dziok—Srivastava operator [12] (see also [22]) HY™ (o, ..., 00 By B) : An— Ay is
defined by the Hadamard product

Hy(ll’M)(Ocla---:al;ﬂla"'aﬁm)f(z) = h’l(al""’al;ﬁl""’ﬁm;z) *f(Z)

(fxl)k—n <o (Ocl)k—n aka

k=n+1 BDien - By k—n)!”

_o (13)

For brevity, we write

H’{;m[al]f(z) = H,(/”")(ocl, e, 0 ﬁl, cee ﬁm)f(z)

Special cases of the Dziok—Srivastava linear operator include the Hohlov linear operator

[13], the Carlson—Shaffer linear operator [11], the Ruscheweyh derivative operator [21], the

generalized Bernardi—Libera—Livingston linear integral operator [10,15,16] and the

Srivastava—Owa fractional derivative operator [19,20]. See also [23] for a related operator.
We need the following definitions and theorems.

Definition 1.1 (Miller and Mocanu [17, Definition 2.2b, p. 21]). Denote by Q the set of all
functions ¢ that are analytic and injective on U\E(g) where

E(q) = {C e oU : limg(z) = oo},
2

and are such that ¢'({) #0 for { € 0U\E(q). Further let the subclass of Q for which ¢(0)=a
be denoted by Q(a), Q(0) = Qy and 9O(1) = 9O,.

Definition 1.2 (Miller and Mocanu [17, Definition 2.3a, p. 27]). Let @ be asetin C, g € Q
and n be a positive integer. The class of admissible functions ¥,[€2,q] consists of
those functions ¥ : C* x U—C that satisfy the admissibility condition y(r,s,?;z) ¢ Q
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whenever r = ¢({), s = k{q¢'({), and
Re{f + 1} sze{CqN(g) + 1},
s q' ()
ze U, { € OU\E(q) and k>n. We write V[, q] as V[Q, q].

In particular when ¢(z) = M(Mz+ a)/(M +az), with M >0 and |a|<M, then
qU)= Uy ={w:|wl<M}, g0)=a, E(q)=0 and ¢gec Q. In this case, we set
V.[Q, M,a]l = V,[2,q], and in the special case when the set Q = U,,, the class is simply
denoted by ¥,[M, a].

Definition 1.3 (Miller and Mocanu [18, Definition 3, p. 817]). Let Q be a set in C, g €
Hla,n] with ¢'(z) #0. The class of admissible functions ¥/[£2, ] consists of those functions
Y : C x U—C that satisfy the admissibility condition y(r,s, ;) € Q whenever r=g(z),
s = zq'(z)/m, and
Re{5+ 1}31Re 2G|
s m q'(2)
ze U, €dU and m>n>1. In particular, we write ¥|[Q, q] as P'[Q, q].

Theorem 1.1 (Miller and Mocanu [17, Theorem 2.3b, p. 28]). Let € W,[Q,q] with
q(0)=a. If the analytic function p(z) = a + a,z" + a, 12" + - - - satisfies
Y(p(2),2p'(2),2°p"(2):2) € Q,
then p(z)< ¢(z).
Theorem 1.2 (Miller and Mocanu [18, Theorem 1, p. 818]). Let y € V' [, q] with q(0)=a.
If p € Q(a) and Yy(p(2), zp'(2), 2p"(2); z) is univalent in U, then
Q C W(p(2),2p'(2),2°p"(2);2) : z € U}
implies q(z)<p(z).

In the present investigation, the differential subordination result of Miller and Mocanu
[17, Theorem 2.3b, p. 28] is extended for functions associated with the Dziok—Srivastava
linear operator H.", and we obtain certain other related results. A similar problem for
analytic functions was studied by Aghalary et al. [1]. See [2-9,14] for related works.
Additionally, the corresponding differential superordination problem is investigated, and
several sandwich-type results are obtained.

2. Subordination results involving the Dziok—Srivastava linear operator

We define the following class of admissible functions that will be required in our first
result.

Definition 2.1. Let Q2 be a set in C and ¢ € 9y N H[0, p]. The class of admissible functions
®y[Q, g] consists of those functions ¢ : C* x U— C that satisfy the admissibility condition

Pu,v,w;2) ¢ Q,
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whenever

u=q({),

b k(g (0) +Oc(oc1—n)Q(C) (o1 € C,o #0, —1),

1

ar(oep + Dw + (n—oq )(ot—n + Du {q"(©)
Re{ P —— ~(2lea—m) + 1)} ZkRe{ ¢0 1}’

ze U, { € 0U\E(q) and k>n.
Theorem 2.1. Let ¢ € dy[Q,q]. If f € A, satisfies

((H," o1 (2), Hy "o + 11/ (2), Hy"[on +21f (2);2) 1 2 € U C 2, 2.1)
then

H"[)f(2)<q(2), (€ ).

Proof. Define the analytic function p in U by

p(2) = H"[o]f (2). (2.2)
In view of the relation
ot H oy + 11f(2) = 2[H [ 1 (2)] + (o1 —n)H"[o 11 (2), (2.3)

from Eq. (2.2), we get

zp/(z) + (o —n)p(2)
H 11f(z) = : 2.4
Lo + 1) - 4
Further computations show that
2.1 2ot — 1 / _ _ 1
H’{l,m[(xl _|_ 2]](‘(2) — Z p (Z) + (OCI n + )Zp (Z) + (O(l n)(al n + )p(Z) . (25)
(o + 1)
Define the transformations from C* to C by
W= v= s+ (ocl—n)r, b t+ 2(a;—n+ 1)s + (o —p)(o;—n + l)r. (2.6)
o (o + 1)
Let
Y(r,s, 1;2) = ¢(u, v, w; 2)
_ ¢ (r’s + (ocl—n)r’ t+ 2(oy—n+ 1)s + (o0 —n)(oe;—n + l)r;Z>. 2.7
o (o + 1)

The proof shall make use of Theorem 1.1. Using Egs. (2.2), (2.4) and (2.5), from Eq. (2.7),
we obtain

Y(p(2), 2p'(2), 29" (2); 2) = U, o1 (2), Hy "o + 11 (2), Hy"'[on +21f(2);2). (2.8)
Hence Eq. (2.1) becomes

V(p(2),2p'(2), 22" (2); 2) € Q.
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The proof is completed if it can be shown that the admissibility condition for ¢ € @[, q]

1s equivalent to the admissibility condition for ¥ as given in Definition 1.2. Note that
E_'_ | — o (o + Dw + (n—ay )y —n + 1u
s o ov + (n—oy )u

and hence € ¥,[2, q]. By Theorem 1.1, p(z)<¢(z) or

H"[u](()<q(z). O

—(2(a1—n) + 1),

If 2+ C is a simply connected domain, then Q2 = A(U) for some conformal mapping /(z)
of U onto Q. In this case the class ®4[h(U), q] is written as @ y[h, g]. The following result is
an immediate consequence of Theorem 2.1.

Theorem 2.2. Let ¢ € @ylh,ql. If f € A, satisfies

GCH"[on1f (2), HY" [y + 11 (2), HY[on + 2] (2);2) < h(z2), (2.9)
then

H"on ) (2) < q(2).

Our next result is an extension of Theorem 2.1 to the case where the behavior of g on U
is not known.

Corollary 2.1. Let Q C C, g be univalent in U and q(0)=0. Let ¢ € Py[Q,q,] for some
p € (0,1) where q,(z) = q(pz). If f € A, and

GH o0 1 (2), H" oy + 111 (2), H" oy 4 21 (2); 2) € @,
then
HE" o ]f (2) < g(2).

Proof. Theorem 2.1 yields H"[01]f(z)<q,(z). The result is now deduced from
4p(2)<q(z). O

Theorem 2.3. Let h and q be univalent in U, with q(0)=0 and set q,(z) = q(pz) and
h,(z) = h(pz). Let ¢ : C? x U—C satisfy one of the following conditions:

1. ¢ € ®ylh,q,)], for some p € (0,1), or
2. there exists p, € (0, 1) such that ¢ € Pylh,,q,], for all p € (py, 1).

If f € A, satisfies Eq. (2.9), then
Hy"[n]f (2)< 4(2).

Proof. The result is similar to the proof of [17, Theorem 2.3d, p. 30] and is therefore
omitted. [

The next theorem yields the best dominant of the differential subordination (2.9).
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Theorem 2.4. Let h be univalent in U. Let ¢ : C* x U—C and  be given by Eq. (2.7).
Suppose that the differential equation

W(q(2), 24 (2), 2°q"(2): 2) = I(z) (2.10)

has a solution g with q(0)=0 and satisfy one of the following conditions:

l. g € Qy and ¢ € Pylh,q],
2. q is univalent in U and ¢ € Pylh,q,] for some p € (0, 1), or
3. q is univalent in U and there exists p, € (0,1) such that ¢ € ®ylh,,q,] for all p € (py, 1).

If f € A, satisfies Eq. (2.9), then
H, "] (2) < q(2).
and q is the best dominant.

Proof. Following the same arguments in [17, Theorem 2.3e, p. 31], we deduce that g is a
dominant from Theorems 2.2 and 2.3. Since ¢ satisfies Eq. (2.10) it is also a solution of
Eq. (2.9) and therefore ¢ will be dominated by all dominants. Hence ¢ is the best
dominant. [

In the particular case g(z)= Mz, M >0, and in view of Definition 2.1, the class of
admissible functions @y4[Q, g], denoted by ®4[Q, M], is described below.

Definition 2.2. Let Q be a set in C and M >0. The class of admissible functions @ y[2, M|
consists of those functions ¢ : C* x U — C such that

_ . _ _ i0
¢(Mei9,k+al nMelg’L—i—(ocl n+ 1)(2k 4+ oy —n)Me ;Z)géQ, @.11)

o (o + 1)
whenever z € U, 0 € R, Re(Le™")> (k—1)kM for all real 0, o; € C(a; 20, —1) and k>n.

Corollary 2.2. Let ¢ € Oy[Q, M. If f € A, satisfies
S(H o001/ (2), HY [0y + 11/ (2), HY [0 + 21/ (2); 2) € 2,

then

[HY [ealf ()] < M.

In the special case Q = qg(U) = {o : |w|< M}, the class ®4[Q, M] is simply denoted by
Py[M].

Corollary 2.3. Let ¢ € dy[M]. If f € A, satisfies
[G(H"[o0)f (2), Hy"[on + 11 (2), Hy'[on + 21 (2); 2)| < M,
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then
|H[on]f (2)| < M.

Corollary 2.4. If Re oy >0 and f € A, satisfies
H, "o + 1/ ()| <M,

then
|H"[o0]f(2)] < M.

Proof. This follows from Corollary 2.3 by taking ¢(u,v,w;z) =v. 0O

Remark 2.1. When Q = U and M =1, Corollary 2.2 reduces to [1, Theorem 1, p. 269].
When Q=U, n=1,1=2, m=1, 01 =a+ 1,00 = 1(a>—1), f; =1 and M =1, Corollary
2.2 reduces to [14, Theorem 1, p. 230]. When M =1, Corollary 2.4 is the same as [I,
Corollary 3, p. 271]

Corollary 2.5. Let M >0 and 0#ay € C. If f € A, satisfies

n Mn
|H "o + 11/(2) + <a—1—1>H,i’m[oc1]f(z)|< ol then |H""[o11f (2)| < M. (2.12)

Proof. Let ¢(u,v,w;z) = v+ (n/oy—1)u and Q = A(U) where h(z) = M oz, M >0. To use
Corollary 2.2, we need to show that ¢ € ®y4[Q, M], that is, the admissibility condition
(2.11) is satisfied. This follows since

g k+o—n o L4+ (q—n+ 1)k +oa—n)Me” >‘_kM Mn

M ‘ aiM ! 5
‘gb( ‘ o ¢ o (op + 1)

b

ot o]’

ze U,0eR, o € C(x;#0,—1) and k>n. Hence by Corollary 2.2, we deduce the required
result. [J

We can use Theorem 2.4 to present a different proof of Corollary 2.5, and to also show
that the result is sharp. The differential equation

24+ (%—1)“2) _ f—f

has a univalent solution ¢(z) = Mz. By using Theorem 2.4, we see that g(z) = Mz is the best
dominant of Eq. (2.12).
Note that

HED(1,1: Df (2) = f(2),
HZVQ2, 1 1Df(2) = 2'(2) + (1-n)f (2),
HPVG, 111 (2) = Y2217(2) + 22—n)z/'(2) + (1=m)2—n)f (2)].
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By taking /=2, m=1, oy = op = §; = 1, Eq. (2.12) shows that for /" € A,, whenever

zf'(2) +n<

1—0(1

Mz
m )f(z)<m, then f(z)< M:z.

Definition 2.3. Let Q be a set in C and ¢ € Qy NHy. The class of admissible functions
@p1[Q,q] consists of those functions ¢ : C’ x U>C satisfying the admissibility
condition

d(u,v,w;z) ¢ Q,
whenever

u=q0), v=[k O+ @—DgO)]/ar (1€ C,a1#0,-1),

(e + Dw + (1= )] (')
Re{ o+ (—apu T+ 1‘2“1}2““{ 70 1}’

ze U, € 0U\E(q) and k>1.

Theorem 2.5. Let ¢ € @y 1[Q,q). If f € A, satisfies

I,m Hl,m 1 Hl,m 2
{ d)(Hn (/@) "o+ 1) Hy"lon + y(z)ﬂ) . U} co o1
zn- zn z"
then
H"[on]f (2)
BTV o),
z
Proof. Define the analytic function p in U by
Houf (2
p(z) = "Z[n—_ll]f() (2.14)
By making use of Egs. (2.3) and (2.14), we get
Hm oy + 17f(z 1,
At IO e+ e-pe, 2.15)
Further computations show that
HY[oy + 2If (z 1 y ,
e+ 26 (') + 2020/(2) + 21— Dp(2). 2.16)
z" ap(oep + 1)
Define the transformations from C* to C by
— —1
u:r,v:s—i_(al l)r’ W:t—|—2oqs+oc1(cx1 )r. 2.17)
o] ar(og + 1)
Let
s+ (e —)r t 4 20015 + oy (o —1)r )
99y [a == s Uy a - ’ ) , 218
W(r,s, t;2) = (u, v, w; 2) ¢<r o nr + 1) (2.18)
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The proof shall make use of Theorem 1.1. Using Egs. (2.14)—(2.16), from Eq. (2.18), we
obtain

2 b 3

I,m Lm Im
w(p<z),zp/(z),zzp”<z>;z):¢(H” /(@) H,"oa + 11/() H,"on +2]f(z)-2>.

Zh— 1 Zh— 1 Zn—l

(2.19)
Hence Eq. (2.13) becomes
Y(p(2), 2p'(2), 2p"(2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €
@[, q] 1s equivalent to the admissibility condition for ¥ as given in Definition 1.2. Note
that

1 I—
oy sl Dw o (e
s voy + (1—oy)u
and hence € Y[Q, q]. By Theorem 1.1, p(z)<¢(z) or
Ho1f (2
A C =

If 2+ C is a simply connected domain, then Q2 = A(U) for some conformal mapping /(z)
of U onto Q. In this case the class @y [h(U), q] 1s written as @y 1[h, g]. In the particular
case g(z) = Mz, M >0, the class of admissible functions @ ;[€2, g] is denoted by @ 1[€2, M].
Proceeding similarly as in the previous section, the following result is an immediate
consequence of Theorem 2.5.

Theorem 2.6. Let ¢ € Py ilh,ql. If f € A, satisfies

(P 0 1o 41060 Ho 2200 ) 2
then

T R q(z).

Definition 2.4. Let Q be a set in C and M > 0. The class of admissible functions @[22, M]
consists of those functions ¢ : C* x U— C such that

-1 L 2 —1)Me"
0 K+ o g L+ o2k +oy—1)Me ;z>¢Q, (2.21)

Me", Me",
¢( o oo + 1)

whenever z € U, 0 € R, Re(Le™?)> (k—1)kM for all real 0, o; € C (a; %0, —1) and k> 1.

Corollary 2.6. Let ¢ € @y 1[Q, M. If f € A, satisfies

(H,i’m[oq]f(z) Hy"on 4+ 11/ (2) Hy"[on + 2/ (2) )
b , , 2) @
Zn—1 =1 zn-1
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then

Hy"[o]/(2)

o <M.

In the special case @ = q(U) = {w : |o| <M}, the class @y 1[Q2, M] is simply denoted by
Dy a[M].

Corollary 2.7. Let ¢ € @y [M]. If [ € A, satisfies
I,m Im ILm
, (Hn [V () HE"on + 1) HE"o + 2]f(2);z) ‘ o

Zn—1 ? Zn—1 ? Zn—1

then
H[oy]f(2)

Zn—l

<M.

Corollary 2.8. If Re a1 >0 and f € A, satisfies
‘H,i””[ocl + 11/ (2)

<M,

Zn—l

then
HEoq ] (2)

Zn—l

<M.

Proof. This follows from Corollary 2.7 by taking ¢(u, v, w;z) =v. [

Remark 2.2. When Q@ =U, n=1, [=2, m=1, oy =a+ l,0p = l(«>—1), f; =1 and
M=1, Corollary 2.6 reduces to [14, Theorem 1, p. 230]. When n=1, [=2, m=1,
o =0+ 1,00 = l(a>—1), f; = 1 and M =1, Corollary 2.8 is the same as [14, Corollary 1,
p. 231].

Example 2.1. If >0 and f € A satisfies

‘ 5(2]‘”(2) ')
e fG)

+ 1> +(1-9) <1, then |f(z)|<]1. (2.22)

Proof. Let ¢(u,v,w;z) = 0Q2w/v—1)+ (1-=0)v/u for all real §>0, n=1, [=2, m=1,
o =lLop=1,p, =1, M=1 and Q@ = h(U) where h(z)=z. To use Corollary 2.6, we need
to show that ¢ € @y [Q, M] = &y ,[U], that is, the admissibility condition (2.21) is
satisfied. This follows since

. Z

‘qb(Mem k+°‘1_1Mei6 L+ oq(2k + oy —1)Me™ >‘
T ’ oo + 1)

k
>3+ (1—5)k+%k(k—l) = k>1,

—i0
_ '5 (L" " 1) + (1—5)/(‘ >+ (1—8)k + gRe(Le_iQ)
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ze U,0 € R, Re(Le )>k(k—1) and k>1. Hence by Corollary 2.6, we deduce the
required result. [

Definition 2.5. Let Q be a set in C and g € Q1 N'H. The class of admissible functions
D 2[€, g] consists of those functions ¢ : C? x U— C satisfying the admissibility condition

d(u,v,w;2) ¢ Q,
whenever

klq'(0)
q(0)

1
u=gq), v= " (1 +a19(0) +

) (OCI € @9a1?&07_1a_23q(é);&0)9

Re {[(ocl + 1v=0) + w110+ )

&q"(©
(1 4+ ap)v—(1 + ou) + (1 4+ o)o—Qoyu + 1)} ZkRe{ + 1}’

q'(0)

ze U, € 0U\E(q) and k>1.

Theorem 2.7. Let ¢ € Py [Q,q]. If f € A, satisfies

" H;ﬂ’ml[on+I]f(Z),Hé””[on+2]f(2)’H,§’m[on+3]f(2);z cevlca @
Hi"nlf(2)  Hy"on + 11 (2)” Hy"[o + 21/ (2)

then

H"[oy 4+ 1]f(2)
Hi"[o]f (2)

<4(2).

Proof. Define the analytic function p in U by

"o + /().

p(2) = o1 2) (2.24)
Using Eq. (2.24), we get
2p'(0) _ AH" o0 + 1V E _AHP 225
PE@ - H e+ 1) H )
By making use of Eq. (2.3) in Eq. (2.25), we get
ijii igg - L 1 (oclp(z) 1+ Zf)’ é?) (2.26)
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Further computations show that

/ / 2 2.1
(54 2O _(zp (z)) L)
oo 3@ _ 1 |, 7O p@)  \ pe) P@)
H"loy +20/() 0 +2 PG) )
p(2)
(2.27)
Define the transformations from C* to C by
1 S
Uu=r,v= (l—l—oclr—l——),
o + 1 r
s /2 t
1 s ocls—|-——(—> + -
w=——1[2+or+-+ L__r 5 r (2.28)
w +2 r Ior+-
Let
W(r,s, t;z) = ¢(u, v, w; z)
s /N2 ot
1 S ;s (2)
=¢|r {a1r+1+—}, 24+or+-+ Tz
o + 1 rliog + 2 r 1 +oqr+2
r
(2.29)

The proof shall make use of Theorem 1.1. Using Egs. (2.24), (2.26) and (2.27), from Egs.
(2.29), we obtain

W(p(2), 29 (2), 2 (2):2) = ¢ (H’i’m[al + /(@) H"[on +2() H, [ +3)(G). )

Hi"oalf(2) " Hy"[on + 11/(2)" Hy"[on + 21/ (2)’
(2.30)
Hence Eq. (2.23) becomes
V(p(2), 2p'(2), 22" (2); 2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ €

D 2[€, q] is equivalent to the admissibility condition for i as given in Definition 1.2. Note

that
E_'_ [ — [(o + D(w—0v) + w—1](1 + a;)v
s N (1 4+ op)v—(1 + oyu)

and hence € Y[, q]. By Theorem 1.1, p(z)<¢(z) or
Hon + 11/(2)

Hy"[ea]f(2)

+ (1 + o))v—Qou + 1),

<4q(z). O

If Q+#C is a simply connected domain, then Q = A(U) for some conformal mapping /(z)
of U onto Q. In this case the class @y [h(U), q] is written as @y [h, g]. In the particular
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case q(z)=14+Mz, M >0, the class of admissible functions @y :[€,¢]| is denoted by
@ 2[Q, M]. The following result is an immediate consequence of Theorem 2.7.

Theorem 2.8. Let ¢ € Oyalh,ql. If f € A, satisfies

" (H’i"n,[ii' +11f(@) Hi"en +2/() Hy"lo +3). ) —ho), 231
H" )/ (2) " Hy"[o + 1) Hy"[oa + 21/ 2)
then
HE" o + 11/()

oy IO

Definition 2.6. Let Q be a set in C and M > 0. The class of admissible functions @ »[2, M]
consists of those functions ¢ : C* x U— C such that

k + o (1 + Me™) Mo 1 a (1 4+ M)+ k

(1 + o)1 + Me™) ’ (o1 + 2)(1 + Me™)

(M + e [Le ™ + kM(ay + 1) + o kM?e1—k2 M> ) ‘0
(o1 + 2)(M + e~ oy M2 + (1 + oy)e 0 + M(1 + 20 + k)]’

whenever z € U,0 € R, Re(Le”Q)z(k—l)kM for all real 0, o; € C(o; #0, —1, —2) and k> 1.

Corollary 2.9. Let ¢ € @yuo[Q, M. If | € A, satisfies
o (Hfmm 1) Hy"loa +2/() Hy"l + 31 ) 0

qb(l + Me”, 1 +

(2.32)

H"onlf(2)  Hy o + 1/(2) Hy"low + 20/ (2)

then

Hy"[on + 1)/(2) _1’< v
Hy"[ou)f (2)

In the special case Q = g(U) = {w : |o—1| <M}, the class @[, M] 1s simply denoted
by @y 1[M].

Corollary 2.10. Let ¢ € Py [M]. If f € A, satisfies

5 Hy"lon + 1) Hy"[on +21(2) Byl +3@) 1\ |
H"[oalf(z)  Hy"[on + 11 (2) Hy "o + 21/ (2)

<M,

then
H oy + 10f(2)
H" a1 (2)

—1’<M

Corollary 2.11. If M >0, a; € C(x; #0,—1) and f € A, satisfies
Hon +2f(2)  HE™[on + 11/(2) M2
H"on + 1) H"[nlf(2) | 11+ ol(l+ M)’

(2.33)
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then
Hon +10f(2)
Hy" a1 (2)

1'<M

Proof. This follows from Corollary 2.9 by taking ¢(u, v, w; z) = v—u and Q = h(U) where
h(z) = (M?/]1 + o1 |(1 + M))z. To use Corollary 2.9 we need to show that ¢ € @5 ,[Q, M],
that is, the admissibility condition (2.32) is satisfied. This follows since

: k 1 4+ Me” : M e—1—Me?®
|p(u, v, w; z)| = '—1—Me’9—|—1—|— o+ 6'3 M| — g{)
(14 o)(1 + Me") [T+onl| 1+ Me'
> M k—l—M> M 1 1’_ M2
Tl Foul | T+M [T I+l [I+M | (1 +o|(1+ M)

zeU,0eR, o € C(x;#0,—1), k#1+ M and k> 1. Hence by Corollary 2.9, we deduce
the required result. [

By taking /=2, m=1, oy = ap = f§; = 1, Eq. (2.33) shows that for /" € A,, whenever

Z%) ﬁf? _f}’g) i ”1 M ')
Zf,(z)_n+1 <—n+ 7 then @ <Mz +n.
G
Example 2.2. If f € A, then
6 G -T5)|== g )= @3

Proof. This follows from Corollary 2.9 by taking ¢(u,v,w;z) = u(Qv—1—u), n=1, [=2,
m=1,0=1,0p0=1, 4, =1, M=1 and Q@ = W(U) where h(z)=z. [

Example 2.3. If M >0 and f € A satisfies
/" (2)

+ 1
S'(@)
e —1|<M, (2.35)
/)
then
')
e lI|<M. (2.36)

Proof. This follows from Corollary 2.10 by taking ¢(u,v,w;z) = Quv—1)/u, n=1, =2,
m=1,0=1,0p=1and f;, =1. O
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3. Superordination of the Dziok—Srivastava linear operator

The dual problem of differential subordination, that is, differential superordination of
the Dziok—Srivastava linear operator is investigated in this section. For this purpose the
class of admissible functions is given in the following definition.

Definition 3.1. Let Q be a set in C and ¢ € HJ0, p] with z¢'(z) #0. The class of admissible
functions @/,[€, ¢] consists of those functions ¢ : C? x U - C that satisfy the admissibility
condition

d(u,v,w;{) € Q,
whenever

_zq'(2) + m(o1 —p)q(z)
o mocy

Re{ocl(ocl + Dw + (n—a) (o —n + l)u_[2( Ca 1]} 1 Re{zq//(z) N 1}

o v+ (n—oy )u '(2)

U= q(Z), (O(l € (]:a o1 #03 _1)9

ze U, {eodU and m>n.
Theorem 3.1. Let ¢ € @,[Q,q). If f € Ay, H"[o]f € Qg and
S, ]/ (2), Hy [ + 11/(2), "o + 21/ (2 2)
is univalent in U, then
Q C {¢(H," a1/ (2), Hy"[on + 11 (2), Hy"[on + 21/ (2):2) : 2 € U} (3.1)
implies

q(2) < H}" [ 1 (2).

Proof. From (2.8) and (3.1), we have

Q C W(p(2),zp/(2),2°p"(2);2) : z € U}

From (2.6), we see that the admissibility condition for ¢ € @},[Q, q] is equivalent to the
admissibility condition for ¥ as given in Definition 1.3. Hence y € ¥/ [€,q], and by
Theorem 1.2, g(z) <p(z) or

q(2)< HMolf(z). O

If Q+C is a simply connected domain, then Q = A(U) for some conformal mapping /(z)
of U onto Q. In this case the class @, [h(U), q] 1s written as @ [h, g]. Proceeding similarly as
in the previous section, the following result is an immediate consequence of Theorem 3.1.

Theorem 3.2. Let h be analytic in U and ¢ € ®ylh,ql. If f € A,y HY[onlf (z) € Qp and
GCHE oy 1f (2), HY oy + 11f (2), HE[og + 21 (2); 2) is univalent in U, then

h(z) < p(HE (o 1f (2), H"[og + 11f(2), HE™[or + 2] (2); 2) (3.2)
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implies

q(z)< H}"[o1]7 (2).

Theorems 3.1 and 3.2 can only be used to obtain subordinants of differential
superordination of the form (3.1) or (3.2). The following theorem proves the existence
of the best subordinant of (3.2) for certain ¢.

Theorem 3.3. Let h be analytic in U and ¢ : C> x U—C and  be given by Eq. (2.7).
Suppose that the differential equation

W(q(2),24'(2),2°q"(2);2) = h(2)
has a solution q € Qy. If ¢ € ®ylh,ql, f € Ay, HY"[o1]f (2) € Qq and
GCH, o 1f (2), Hy™[owy + 11/ (2), Hy "o + 21/ (2):2)
is univalent in U, then
h(2) < GCH, o )f (2), "oy + 11 (2), Hy ™o + 2f (2); 2)
implies
9(2) < H," o1/ (2)
and q(z) is the best subordinant.

Proof. The result is similar to the proof of Theorem 2.4 and is therefore omitted. [

Combining Theorems 2.2 and 3.2, we obtain the following sandwich-type theorem.

Corollary 3.1. Let hy and g, be analytic functions in U, h, be univalent function in U, ¢, € Qy
with q1(0)=g>(0)=0 and ¢ € Pylhy, 2] N Pylhi, qi]. If f € Ay, HY"[01]f (2) € H[0,p] N Qo
and

GCH" o] (2), H)"[or + 11 (2), Hy"[on + 2]/ (2); 2)
is univalent in U, then

h(2) < G(H," [ ]f (2), Hy"[on + 11/ (2), Hy [ + 21 (2); 2) < Ia(2),
implies

q1(2) < H""[01]f (2) < q2(2).

Definition 3.2. Let Q be a set in C and ¢g € Hy with z¢'(z)#0. The class of admissible
functions @} ,[€Q,q] consists of those functions ¢ : C3x U—C that satisfy the
admissibility condition

P(u,v,w; () € Q, (3.3)
whenever
u=gq), v= 2@+ men = Dg(@) (ay € C o1 #0,-1),

moi
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ar[(or + Dw + (1—op)u] 1 zq"(2)
Re{ v+ (1—o)u +(1—2a1)}£%R { q'(2) +1}

ze U, eoUand m>1.

Next we will give the dual result of Theorem 2.5 for differential superordination.
Theorem 3.4. Let ¢ € @y [Q,q). If f € Ay, H!'"oylf (2)/2"' € Qg and
d)(HZ’"[Of f(2) Hy"[oa + 117 (z) Hy"[on +20f(2) )

an ’ an ? an

is univalent in U, then

Qc {qb(Hm;[fll]f(z)aHlm[a;nﬁ l]f(z)»Hlm[aZanrl Ve, ) 1z € U} (3.4)
implies
I,m
o(2)< H,; Z[:Cll]f(Z)

Proof. From (2.19) and (3.4), we have

Q C {p(p(2),2p'(2),2°p"(2);2) : z € U},

From (2.17), we see that the admissibility condition for ¢ € @} ,[€, ¢] is equivalent to the
admissibility condition for y as given in Definition 1.3. Hence y € ¥Y'[Q,q], and by
Theorem 1.2, g(z) <p(z) or

)< H:"onlf(z). O

If Q+C is a simply connected domain, then Q = A(U) for some conformal mapping /(z)
of Uonto Q. In this case the class @} | [#(U), q] is written as @y [4, g]. The following result
i1s an immediate consequence of Theorem 3.4.

Theorem 3.5. Let g€ Ho, h is analytic on U and ¢ € Py lh,ql. If [ €A,
H!'" oy lf(2)/2! € Q and G(HEM oy 11 (2) /271, HEM oy + 10 (2) /21, HEM o +
2f(2)/z"""; z) is univalent in U, then

h(z)<¢< lmZ[:11]f(Z) ’ HIM[OCZIn—i_l l]f(Z)’HZM[OCZInle e, 2 ) (3.5)
implies
Im
o)< BV )

Zh— 1

Combining Theorems 2.6 and 3.5, we obtain the following sandwich-type theorem.

Corollary 3.2. Let hy and q, be analytic functions in U, h, be univalent function in U, q;, € Q,
with 1(0)=g¢>(0)=0 and ¢ € Py 1[h2, 2] N Py (M1, 1] If f € Ay, H o lf(2)/2"" € Ho N
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Qo and
(H””[On]f(Z) Hon + 10 (2) HY[on + 2] (2) )

d) Zn 1 ? Zh— 1 ? Zh— 1 ?

is univalent in U, then
I,m I,m I,m

h1(2)<(/5<H ) A7 + WE) HL7n + 2D, ><h )

implies
I,m
00 < VG o)

Definition 3.3. Let Q be a set in C, ¢(z)#0, z¢'(z) #0 and g € H. The class of admissible
functions  @;,[€Q,q] consists of those functions ¢ : C3’x U—C that satisfy the
admissibility condition

d(u,v,w; () € Q,
whenever

z2q'(2)
mq(z)

[ + D(w—0v) + w—=1](1 + o1)v 1 24'(2)
Re{ Ao+ mw) + (1 4 o) o—Qoyu + 1)}£%Re{ 70 +1},

ze U, e€edU and m>1.

1
u=q(2), v=7<1+a1q(2)+ ) (01 € C o0 #0,—1,-2),

o + 1

Now we will give the dual result of Theorem 2.7 for differential superordination.
Theorem 3.6. Let ¢ € @ ,[Q,q]. If [ € Ay, HY'[on 4 11f(2)/HY"[01]f (2) € Q1 and
b Hy"on + 10f(2) Hy"[on + 2] (2) Hy"[o 1+3/@.
H ) (@) HY o + 1@ HY T +21/2)

is univalent in U, then

aclo HE[oq + 1]f(2) H""[on +2)f(z) HL"[o +3@. ).y (3.6)
HMog1f(2)  HE™ o 4+ 11£(2) H,i’"[oc1+2]f(z) '

implies

HY o + 11/ ()
AT
Proof. From (2.30) and (3.6), we have

Q C {d(p(2), 29 (2),2°p"(2);2) 1 z € U}
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In view of (2.28), the admissibility condition for ¢ € @} ,[Q,q] is equivalent to the
admissibility condition for i as given in Definition 1.3. Hence Y € Y'[Q,q], and by
Theorem 1.2, g(z)<p(z) or

H[oy 4+ 1]f(2)
H"ulf(z)

q(2)<

If Q+#C is a simply connected domain, then Q = A(U) for some conformal mapping /(z) of
U onto Q. In this case the class @7 ,[A(U), g] is written as @Y ,[h, g]. Proceeding similarly as in
the previous section, the following result is an immediate consequence of Theorem 3.6.

Theorem 3.7. Let q € H, h be analytic in U and ¢ € Py,[h,q). If | € Ay, HM oy +
1 (2)/H"[oa]f () € Q1 and  ¢(H"[on + l]f(Z)/H,im[OCl]f(Z) H" o + Z]f(Z)/H,im o +
11 (2), H:m oy + 31 (2)/ HE" oy + 21 (2); 2) is univalent in U, then

b= d)(Hlml[Zl F/C) Hy £2VQ) o + 3V ), ) 3
H"[oulf(2)  Hy™oq + 11 (2) Hy ™o + 21 (2)
implies
yoy< i + V)

Hy"[oa]f(2)

Combining Theorems 2.8 and 3.7 we obtain the following sandwich-type theorem.

Corollary 3.3. Let hy and q, be analytic functions in U, h, be univalent function in U, q¢; € Q,
with — q1(0)=gx(0)=1 and ¢ € Ppolhy, 2l N Pyolh,qil.  If  fe A, HMo+
11 (z)/Hoy1f (z) € HN Q) and

" (H“”[on + 11/ (2) HY oy + 21 (2) HE[on 431 (2) )

Hy"[n]f((2) Hy"[on + 1) Hy"[oa + 21/ ()
is univalent in U, then

HY"on +11f(2) Hy"[on +21f(2) HY"[o +3]f(z)'z < hy(z)
Holf(z) " HY"[oq + 11f(2) HY "o + 21 (2)

h1(2)<f/><

implies
Hy" o +11(2)
Hi"[oa]f(2)

q1(2)< < qs(2).
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